Merge remote-tracking branch 'upstream/master' into master

pull/781/head
Dhairya Gada 2020-10-26 19:55:52 +05:30
commit 02c58a5666
3 changed files with 57 additions and 63 deletions

View File

@ -53,10 +53,10 @@ ALTROUT TC DISINDAT # CHECK MODE SELECT SWITCH AND DIDFLG.
CAF BIT2 # RATE COMMAND IS EXECUTED BEFORE RANGE.
EXTEND
WOR CHAN14 # ALTRATE (BIT2 = 1), ALTITUDE (BIT2 = 0).
ARCOMP CA RUNIT # COMPUTE ALTRATE = RUNIT.VVECT M/CS *(-6).
ARCOMP CA RUNIT # COMPUTE ALTRATE=RUNIT.VVECT M/CS *2(-6).
EXTEND
MP VVECT # MULTIPLY X-COMPONENTS.
XCH RUPTREG1 # SAVE SINGLE PRECISION RESULT M/CS*2(-6)
XCH RUPTREG1 # SAVE SINGLE PRECISION RESULT M/CS*2(-6).
CA RUNIT +1 # MULTIPLY Y-COMPONENTS.
EXTEND
MP VVECT +1
@ -80,10 +80,10 @@ ARCOMP CA RUNIT # COMPUTE ALTRATE = RUNIT.VVECT M/CS *(-6).
# Page 899
EXTEND # CHECK POLARITY OF ALTITUDE RATE.
BZMF +2
TCF DATAOUT # NEGATIVE -- SEND POS. PULSES TO ALTM REG.
CA ALTRATE # POSITIVE OR ZERO -- SET SIGN BIT = 1 AND
AD BIT15 # SEND TO ALTM REGISTER. *DO NOT SEND +0*
DATAOUT TS ALTM # ACTIVATE THE LANDING ANALOG DISPLAYS
TCF DATAOUT # NEGATIVE - SEND POS. PULSES TO ALTM REG.
CA ALTRATE # POSITIVE OR ZERO - SET SIGN BIT = 1 AND
AD BIT15 # SEND TO ALTM REGISTER. *DO NOT SEND +0*
DATAOUT TS ALTM # ACTIVATE THE LANDING ANALOG DISPLAYS - -
CAF BIT3
EXTEND
WOR CHAN14 # BIT3 DRIVES THE ALT/ALTRATE METER.
@ -96,13 +96,13 @@ ALTOUT TC DISINDAT # CHECK MODE SELECT SWITCH AND DIDFLG.
CS BIT2
EXTEND
WAND CHAN14
CCS ALTBITS # = -1 IF OLD ALT. DATA TO BE EXTRAPOLATED.
CCS ALTBITS # =-1 IF OLD ALT. DATA TOBE EXTRAPOLATED.
TCF +4
TCF +3
TCF OLDDATA
TS ALTBITS # SET ALTBITS FROM -0 TO +0.
CS ONE
DXCH ALTBITS # SET ALTBITS = -1 FOR SWITCH USE NEXT PASS.
DXCH ALTBITS # SET ALTBITS=-1 FOR SWITCH USE NEXT PASS.
DXCH ALTSAVE
CA BIT10 # NEW ALTITUDE EXTRAPOLATION WITH ALTRATE.
XCH Q
@ -150,11 +150,11 @@ DISINDAT EXTEND
RAND CHAN30 # DISPLAYS? I.E.,
CCS A # IS THE MODE SELECT SWITCH IN PGNCS?
TCF DISPRSET # NO. ASTRONAUT REQUESTS NO INERTIAL DATA
CS FLAGWRD1 # YES. CHECK STATUS OF DIDFLAG.
CS FLAGWRD1 # YES. CHECK STATUS OF DIDFLAG.
MASK DIDFLBIT
EXTEND
BZF SPEEDRUN # SET. PERFORM DATA DISPLAY SEQUENCE.
CS FLAGWRD1 # RESET. PERFORM INITIALIZATION FUNCTIONS.
BZF SPEEDRUN # SET. PERFORM DATA DISPLAY SEQUENCE.
CS FLAGWRD1 # RESET. PERFORM INITIALIZATION FUNCTIONS.
MASK DIDFLBIT
ADS FLAGWRD1 # SET DIDFLAG.
CS BIT7
@ -262,24 +262,24 @@ SPEEDRUN CS PIPTIME +1 # UPDATE THE VELOCITY VECTOR
CA DELVS # HI X OF VELOCITY CORRECTION TERM.
AD VVECT # HI X OF UPDATED VELOCITY VECTOR.
TS ITEMP1 # = VX - DVX M/CS *2(-5).
TS ITEMP1 # = VX - DVX M/CS*2(-5).
CA DELVS +2 # Y
AD VVECT +1 # Y
TS ITEMP2 # = VY - DVY M/CS *2(-5)
TS ITEMP2 # = VY - DVY M/CS*2(-5).
CA DELVS +4 # Z
AD VVECT +2 # Z
TS ITEMP3 # = VZ - DVZ M/CS *2(-5)
TS ITEMP3 # = VZ - DVZ M/CS*2(-5).
CA ITEMP1 # COMPUTE VHY, VELOCITY DIRECTED ALONG THE
EXTEND # Y-COORDINATE.
MP UHYP # HI X OF CROSS-RANGE HALF-UNIT VECTOR
MP UHYP # HI X OF CROSS-RANGE HALF-UNIT VECTOR.
XCH RUPTREG1
CA ITEMP2
EXTEND
MP UHYP +2 # Y
MP UHYP +2 # Y
ADS RUPTREG1 # ACCUMULATE PARTIAL PRODUCTS.
CA ITEMP3
EXTEND
MP UHYP +4 # Z
MP UHYP +4 # Z
ADS RUPTREG1
# Page 903
CA RUPTREG1
@ -291,11 +291,11 @@ SPEEDRUN CS PIPTIME +1 # UPDATE THE VELOCITY VECTOR
XCH RUPTREG1
CA ITEMP2
EXTEND
MP UHZP +2 # Y
MP UHZP +2 # Y
ADS RUPTREG1 # ACCUMULATE PARTIAL PRODUCTS.
CA ITEMP3
EXTEND
MP UHZP +4 # Z
MP UHZP +4 # Z
ADS RUPTREG1
CA RUPTREG1
DOUBLE
@ -317,7 +317,7 @@ LATFWDV CA ITEMP4 # COMPUTE LATERAL AND FORWARD VELOCITIES.
CA ITEMP3
EXTEND
MP VHZ
ADS RUPTREG1 # = VHY(COS)AOG+VHZ(SIN)AOG M/CS *2(-5)
ADS RUPTREG1 # =VHY(COS)AOG+VHZ(SIN)AOG M/CS *2(-5)
CA VELCONV # CONVERT LATERAL VELOCITY TO BIT UNITS.
EXTEND
MP RUPTREG1
@ -344,7 +344,7 @@ LATFWDV CA ITEMP4 # COMPUTE LATERAL AND FORWARD VELOCITIES.
CAF ONE # LOOP TWICE.
VMONITOR TS ITEMP5 # FORWARD AND LATERAL VELOCITY LANDING
INDEX ITEMP5 # ANALOG DISPLAYS MONITOR.
INDEX ITEMP5 # ANALOG DISPLAYS MONITOR.
CCS LATVEL
TCF +4
TCF LVLIMITS
@ -427,7 +427,6 @@ LVLIMITS INDEX ITEMP5
BZMF +2
TCF NEGLMLV
INDEX ITEMP5
CS LATVEL
EXTEND
BZMF LVMINLM
@ -500,11 +499,11 @@ ZEROLSTY INDEX ITEMP5
EXTEND
WOR CHAN14
TC LADQSAVE # GO TO ALTROUT +1 OR TO ALTOUT +1
ZERODATA CAF ZERO # ZERO ALTSAVE AND ALTSAVE +1
TS L # NO NEGATIVE ALTITUDES ALLOWED.
ZERODATA CAF ZERO # ZERO ALTSAVE AND ALTSAVE +1 - - -
TS L # NO NEGATIVE ALTITUDES ALLOWED.
TCF ZDATA2
# ****************************************************************************
# ************************************************************************
DISPRSET CS FLAGWRD0 # ARE WE IN DESCENT TRAJECTORY?
MASK R10FLBIT
@ -514,7 +513,7 @@ DISPRSET CS FLAGWRD0 # ARE WE IN DESCENT TRAJECTORY?
MASK IMODES33 # CHECK IF INERTIAL DATA JUST DISPLAYED.
CCS A
CAF BIT2 # YES. DISABLE RR ERROR COUNTER
AD BIT8 # NO. REMOVE DISPLAY INERTIAL DATA
AD BIT8 # NO. REMOVE DISPLAY INERTIAL DATA
COM
EXTEND
WAND CHAN12
@ -525,12 +524,10 @@ ABORTON CS BITS8/7 # RESET INERTIAL DATA, INTERLEAVE FLAGS.
MASK FLAGWRD1
TS FLAGWRD1 # RESET DIDFLAG.
TCF TASKOVER
# ******************************************************************************
# ************************************************************************
BITS8/7 OCT 00300 # INERTIAL DATA AND INTERLEAVE FLAGS.
BITSET = PRIO6
# ******************************************************************************
# ************************************************************************

View File

@ -35,22 +35,22 @@
EBANK= XSM
# THESE TWO ROUTINES COMPUTE THE ACTUAL STATE VECTOR FOR LM,CSM BY ADDING
# THE CONIC R,V AND THE DEVIATIONS R,V. THE STATE VECTORS ARE CONVERTED TO
# THE CONIC R,V AND THE DEVIATIONSR,V. THE STATE VECTORS ARE CONVERTED TO
# METERS B-29 AND METERS/CSEC B-7 AND STORED APPROPRIATELY IN RN,VN OR
# R-OTHER,V-OTHER FOR DOWNLINK. THE ROUTINES NAMES ARE SWITCHED IN THE
# R-OTHER , V-OTHER FOR DOWNLINK. THE ROUTINES NAMES ARE SWITCHED IN THE
# OTHER VEHICLES COMPUTER.
#
# INPUT
# STATE VECTOR IN TEMPORARY STORAGE AREA
# IF STATE VECTOR IS SCALED POS B27 AND VEL B5
# SET X2 TO +2
# IF STATE VECTOR IS SCALED POS B29 AND VEL B7
# SET X2 TO 0
# STATE VECTOR IN TEMPORARY STORAGE AREA
# IF STATE VECTOR IS SCALED POS B27 AND VEL B5
# SET X2 TO +2
# IF STATE VECTOR IS SCALED POS B29 AND VEL B7
# SET X2 TO 0
#
# OUTPUT
# R(T) IN RN, V(T) IN VN, T IN PIPTIME
# R(T) IN RN, V(T) IN VN, T IN PIPTIME
# OR
# R(T) IN R-OTHER, V(T) IN V-OTHER (T IS DEFINED BY T-OTHER)
# R(T) IN R-OTHER, V(T) IN V-OTHER (T IS DEFINED BY T-OTHER)
COUNT* $$/GEOM
SVDWN2 BOF RVQ # SW=1=AVETOMID DOING W-MATRIX INTEG.
@ -58,14 +58,14 @@ SVDWN2 BOF RVQ # SW=1=AVETOMID DOING W-MATRIX INTEG.
+1
VLOAD VSL*
TDELTAV
0 -7,2
0 -7,2
VAD VSL*
RCV
0,2
STOVL RN
TNUV
VSL* VAD
0 -4,2
0 -4,2
VCV
VSL*
0,2
@ -76,14 +76,14 @@ SVDWN2 BOF RVQ # SW=1=AVETOMID DOING W-MATRIX INTEG.
# Page 321
SVDWN1 VLOAD VSL*
TDELTAV
0 -7,2
0 -7,2
VAD VSL*
RCV
0,2
STOVL R-OTHER
TNUV
VSL* VAD
0 -4,2
0 -4,2
VCV
VSL*
0,2
@ -91,32 +91,32 @@ SVDWN1 VLOAD VSL*
RVQ
# Page 322
# THE FOLLOWING ROUTINE TAKES A HALF UNIT TARGET VECTOR REFERRED TO NAV BASE COORDINATES AND FINDS BOTH
# GIMBAL ORIENTATIONS AT WHICH THE RR MIGHT SIGHT THE TARGET. THE GIMBAL ANGLES CORRESPONDING TO THE PRESENT MODE
# ARE LEFT IN MODEA AND THOSE WHICH WOULD BE USED AFTER A REMODE IN MODEB. THIS ROUTINE ASSUMES MODE 1 IS TRUNNION
# ANGLE LESS THAN 90 DEGS IN ABS VALUE WITH ARBITRARY SHAFT, WITH A CORRESPONDING DEFINITION FOR MODE 2. MODE
# THE FOLLOWING ROUTINE TAKES A HALF UNIT TARGET VECTOR REFERRED TO NAV BASE COORDINATES AND FINDS BOTH
# GIMBAL ORIENTATIONS AT WHICH THE RR MIGHT SIGHT THE TARGET. THE GIMBAL ANGLES CORRESPONDING TO THE PRESENT MODE
# ARE LEFT IN MODEA AND THOSE WHICH WOULD BE USED AFTER A REMODE IN MODEB. THIS ROUTINE ASSUMES MODE 1 IS TRUNNION
# ANGLE LESS THAN 90 DEGS IN ABS VALUE WITH ARBITRARY SHAFT, WITH A CORRESPONDING DEFINITION FOR MODE 2. MODE
# SELECTION AND LIMIT CHECKING ARE DONE ELSEWHERE.
#
# THE MODE 1 CONFIGURATION IS CALCULATED FROM THE VECTOR AND THEN MODE 2 IS FOUND USING THE RELATIONS
# THE MODE 1 CONFIGURATION IS CALCULATED FROM THE VECTOR AND THEN MODE 2 IS FOUND USING THE RELATIONS
#
# S(2) = 180 + S(1)
# T(2) = 180 - T(1)
# S(2) = 180 + S(1)
# T(2) = 180 - T(1)
#
# THE VECTOR ARRIVES IN MPAC WHERE TRG*SMNG OR *SMNB* WILL HAVE LEFT IT.
# THE VECTOR ARRIVES IN MPAC WHERE TRG*SMNB OR *SMNB* WILL HAVE LEFT IT.
RRANGLES STORE 32D
DLOAD DCOMP # SINCE WE WILL FIND THE MODE 1 SHAFT
34D # ANGLE LATER, WE CAN FIND THE MODE 1
SETPD ASIN # TRUNNION BY SIMPLY TAKING THE ARCSIN OF
0 # THE Y COMPONENT, THE ASIN GIVIN AN
PUSH BDSU # ANSWER WHOSE ABS VAL IS LESS THAN 90 DEG.
PUSH BDSU # ANSWER WHOSE ABS VAL IS LESS THAN 90 DEG
LODPHALF
STODL 4 # MODE 2 TRUNNION TO 4.
LO6ZEROS
STOVL 34D # UNIT THE PROJECTION OF THE VECTOR
32D # IN THE X-Z PLANE
UNIT BOVB # IF OVERFLOW, TARGET VECTOR IS ALONG Y
32D # IN THE X-Z PLANE
UNIT BOVB # IF OVERFLOW,TARGET VECTOR IS ALONG Y
LUNDESCH # CALL FOR MANEUVER UNLESS ON LUNAR SURF
STODL 32D # PROJECTION VECTOR.
32D
@ -154,7 +154,7 @@ RRANGLES STORE 32D
GOTO
S2
# Page 324
# GIVEN RR TRUNNION AND SHAFT (T,S) IN TANGNB,+1, FIND THE ASSOCIATED
# GIVEN RR TRUNNION AND SHAFT (T,S) IN TANGNB,+1,FIND THE ASSOCIATED
# LINE OF SIGHT IN NAV BASE AXES. THE HALF UNIT VECTOR, .5(SIN(S)COS(T),
# -SIN(T),COS(S)COS(T)) IS LEFT IN MPAC AND 32D.
@ -190,7 +190,7 @@ RRNB1 PUSH COS # SHAFT ANGLE TO 2
RRNBMPAC STODL 20D # SAVE SHAFT CDU IN 21.
MPAC # SET MODE TO DP. (THE PRECEEDING STORE
# MAY BE DP, TP OR VECTOR.)
# MAY BE DP. TP OR VECTOR.)
RTB SETPD
CDULOGIC
0
@ -203,7 +203,4 @@ RRNBMPAC STODL 20D # SAVE SHAFT CDU IN 21.
CDULOGIC
GOTO
RRNB1
# Page 325
# (This page has nothing on it.)
# Page 325 (empty page)

View File

@ -69,11 +69,11 @@
## অবদান
কোনো পুল রিকুয়েস্ট খোলার আগে দয়া করে পড়ুন [CONTRIBUTING.md][7]।
কোনো পুল রিকুয়েস্ট খোলার আগে দয়া করে [CONTRIBUTING.md][7] তা পড়ুন
## সংগ্রহ
যদি আপনি এই নিয়মগুলি পরিচালনা করেন তবে তা [Virtual AGC][8] দেখুন।
যদি আপনি এই নিয়মগুলি পরিচালনা করেন তবে [Virtual AGC][8] তা দেখুন।
## আরোপণ